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Abstract-The effects of phase interface and surface tension in multiphase fluid systems are investigated. The 
modification of the entropy, free energy, internal energy, enthalpy, free enthalpy, and their differentials are 
deduced for both droplet and vapour bubbles of uniform and nonuniform temperature and size distribution. 
The investigation yields also the latent heat, the Clausius-Clapeyron equation, and the polytropic exponent, 
adapted for disperse state. The relationships deduced for one-component systems are generalized for two- 
and more-component systems. It is presented that in the course of bubble size reduction both the vapour 
temperature and pressure arise much over the critical values taken in the usual sense, since the saturation 
state, the coexistence curve, and the critical state are significantly modified because of the bubble size in 
submicroscopic order of magnitude. Also the interdependence of bubble annihilation and cavitation damage 

is explained. 

NOMENCLATURE INTRODUCTION 

area of phase interface; THE DESCRIPTICIN of the thermodynamic processes 
isobaric specific heat; within disperse fluid systems needs the knowledge of 
isochoric specific heat ; the instantaneous states of the phases. The characteris- 
free energy ; tic functions are able to describe not only the steady 
specific free energy ; state of equilibrium systems, but also the in- 
free enthalpy ; stantaneous state of non-equilibrium systems, as well 
specific free enthalpy ; as the local states of their single homogeneous parts. It 
ent halpy ; is the purpose of this article to give a brief theoretical 
specific enthalpy ; study of the way in which the superficial thermo- 
mass ; dynamic functions are effected by surface tension in 
exponent of deviation from saturation state; multiphase fluid systems. 
polytropic exponent ; 
pressure; 
saturation pressure; 
pressure difference; 
radius of disperse particles ; 
latent ,heat of vaporization ; 
entropy; 
specific entropy; 
temperature; 
internal energy; 
specific internal energy; 
volume; 
specific volume ; 
function in general. 

Greek symbols 

4 quantity due to intermolecular forces; 

K, isoentropic exponent; 

6, surface tension. 

Superscripts 
, 
f refers to liquid phase; 
# 
*’ 

refers to vapour phase; 
, refers to disperse state. 

According to the theorem on surface tension, the 
characteristic functions and some state quantities of 
multiphase systems are different from the simple 
algebraic sum of them, corresponding to the separate 
phases without interface, other circumstances being 
equal, i.e. their total mass, temperature, and pressure 
are identical, independent of the chemical composition 
of the phases. Therefore, at the precise description of 
multiphase systems also the additional effects of 
surface tension are to be considered. The neglect of 
surface: tension effects is permissible only in the case of 
a ho~zontal plain phase interface, when the surface 
tension produces no superpressure within one of the 
phases, or the curvature of the interface is minute, and 
the mass of the interfacial boundary layer is slight in 
comparison with the total mass of the system. 

When investigating a multiphase system it is nec- 
essary to decide to which phase to attribute the 
consequences of the superficial effects. It can clearly be 
seen that mainly the state of the dispersed phase is 
affected in such a case. Thus the consequences of the 
state variation may be predominantly attached to the 
disperse phase, while the coherent bulk phase suffers 
practicaily no change [I]. The natural choice is the 
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1308 E. PATTANTY~S-H. 

disperse phase, therefore this convention will be adop- 
ted here. 

The investigation will be carried out on this basis, 
and it is intended to consider the behaviour of disperse 
particles in one-component multiphase fluid systems, 
then the situation will be considered when the disperse 
phase consists of two or more components, chemically 
non reacting. 

The fundamental equations of thermodynamics 
which represent the interrelations among the charac- 
teristic functions are defined in general by 

U=F+TS, 

H = U+pV, 

G = F+pV. 

In case these characteristic functions refer to a single 
disperse particle surrounded by the coherent phase (i.e. 
to a droplet in vapour atmosphere or a bubble within 
liquid bulk), let us introduce the notation 

U, = F,+TS,, (1) 

H, = U,+p,V, (2) 

G, = F,+p,V. (3) 

If F is the free energy of a certain element of fluid of 
the same mass as a droplet or bubble but without 
phase interface, then in the presence of phase interface 
but other conditions being equal the free energy of this 
element of fluid turns to 

F, = F+Aa,, (4) 

where A is the area of the interface surrounding the 
disperse particle and Q.+ the surface tension [l-3]. 

The entropy is given [3,4] by 

s= _g, 

a result which may be combined with the equation (4) 
to give 

S, = S-A%, 

where S, is the entropy modified by the presence of 
phase interface [ 1,2, 51. 

On substituting the equations (4) and (5) into (1) the 
internal energy of a single particle belonging to the 
disperse phase is found to be given [ 1,2,5] by 

U, = .+A(cT*-T%). 

It is known that the pressure of surrounded liquid 
and vapour particles always is higher by Ap than that 
of the ambient phase. However, the pressure in 
surrounded particles is different not only from the 
external pressure, but also from the saturation pres- 
sure corresponding to its own temperature, viz. by 
Ap*, what will be determined in the sequel. 

Under the circumstances, the expression of the 
enthalpy (2) becomes 

H, = H+A(o,-T%)-A&V, (7) 

and that of the free enthalpy (3) turns to 

G, = G + Aa, - Ap*V, (8) 

as it was deduced earlier [6] in keeping with the 
definition of the work required for creating a bubble 
surface [7,8]. 

The surface tension is mostly assumed as a tempera- 
ture function only, what is exact merely in the case of a 
horizontal plain interface. 

When investigating droplets and bubbles of size 
small enough, they are assumed spherical ones. At the 
present stage of theory the effect of size on surface 
tension is usually taken into consideration by the 
approximation 

R 
g* =jggfy 

where 6 is a quantity which expresses the effects of 
intermolecular forces and can be treated nearly con- 
stant estimated at 1O-1o-1O-g M, until we get to quite 
small particle sizes [S, 9, IO]. In the case of very minute 
radii the accuracy of the approximative expression (9) 
is not satisfactory [9,11]. 

A thermodynamic investigation resulted in the 
equation 

2W + V/R)+ @'/3R2)l 
da*‘aR= R+26[1+(6/R)+(~5~/3R~)] R 

.% (1o) 

for the interdependence of the variables in question, 
where the quantity 6, too, cannot be treated as a 
constant. Also the possibility should be assumed that 
the quantity 6 might ultimately change sign and thus 
lead to a minimum of surface tension on going to 
smaller and smaller radii [ 123. Such a behaviour of the 
surface tension becomes important in connection with 
the cavitation damage as it will be treated later. 

Returning to the above-mentioned pressure differ- 
ences, according to Laplace’s theorem the capillary 
superpressure within a spherical particle of dispersed 
state in comparison with the ambient pressure is given 

by 

(11) 

Moreover, with reference to Kelvin’s explanation it 
is often stated that the vapour pressure is given by 

p” = p, f 2. _-!L 
R f-v” (12) 

where the upper sign ( + ) relates to the droplet, and the 
lower one (-) to the bubble [2, 13, 14, 151. This 
expression has been obtained from Taylor’s explana- 
tion of 

p” =Psexp . (13) 

In this equation the surface tension, nevertheless, 
should be treated corresponding to the foregoing, and 
the radius is either positive or negative in sign, 
depending upon the state of aggregation as used above 
[2, 5, 15, 161. 
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This means that the bubble pressure is immediately 
given by the equation (13), but in order to define the 
droplet pressure this equation should be completed by 
the pressure difference between phases Ap (11). Con- 
sequently, the pressure in a single droplet or bubble 
can be defined by 

p* = pSexp&.&) + F, (14) 

and introducing the notation 

2a v’ m=*.- 
p, R v” - v’ ’ 

we obtain 

p*=p,expm+y. 

(15) 

(16) 

where the upper sign (+ ) relates to the droplet, and the 
lower one ( - ) to the bubble, consequently, in the latter 
case the last term on the RHS disappears. The 
exponent m may be either positive (droplet) or nega- 
tive (bubble) in sign [15,16]. 

On the basis of the equation (16) the difference 
between saturation pressure and droplet or bubble 
pressure is given by 

Ap* = pS-p* = &(l-exPm) -p, (l*;b* (17) 

where the note made above on signs continues to hold. 
It follows from the equations (13~(16) that when 

droplets are dispersed in a one-component system, the 
pressures in all the phases exceed the saturation 
pressure, but if bubbles are dispersed in such a system, 
the pressures in all the phases deviate to the contrary. 
In other words, supposing that a multiphase fluid 
system could be in thermal equilibrium, according to 
the usual terminology, all the phases would be either 
subcooled (droplets in vapour atmosphere), or 
superheated (bubbles within a liquid bulk). 

As a matter of fact, the equations (13~(16) rather 
mean that not only the characteristic functions, but 
also the notion of saturation state itself is modijed 
under the circumstances. Namely, according to the 
usual definition of saturation state, the saturation 
pre. sure depends exclusively upon temperature. 
Nevertheless, this statement is valid not in general, 
merely in the special case R = 00, failing which the 
saturation state is determined not only by tempera- 
ture, but also by surface tension and particle size. The 
instantaneous saturation state of a droplet or vapour 
bubble undoubtedly can be identified by the fact that 
an infinitesimal heat transfer is inseparably accom- 
panied by phase change. 

The characteristic functions per unit mass of the 
disperse phase in specific form can be obtained as 
follows. 

Provided that the system is of monodisperse charac- 
ter, i.e. the temperature and size distribution in the 
disperse phase is uniform, taking the equations (4)-(8), 
substituting the spherical surface area and volume as 
well as the pressure difference (17), then dividing 

through by the mass of a single droplet or bubble, 
respectively, all these operations result in the functions 

s,=s- 
3~ &,/aT 

R ’ 
(18) 

f*=f+?, 

u _ u + W, - T aa,/aT) 
*- R ’ 

(20) 

(4+l)a,-3Taa,/aT‘ 

R 

(21) 

( (4f l)o*‘ 
g*=g-v ps(l-expm)-p 

R 1 
, (22) 

where the upper signs (+ ) relate to droplets, and the 
lower ones (- ) to bubbles, moreover, the exponent m 
has the same sign as in the equations (15) and (16). 

Having established the enthalpy also the latent heat 
modified by surface tension can be defined. 

In the usual expression of the latent heat 

r = h”-h’ 

the effects of the surface tension and capillary super- 
pressure are disregarded. When taking into account 
also these effects, there are two variants depending on 
the nature of the multiphase system. 

If droplets are dispersed with uniform temperature 
and size distribution in vapour atmosphere, the latent 
heat per unit mass of the liquid phase can be defined by 

ri = h”-h’,. 

If bubbles of uniform temperature and size distri- 
bution take place in a liquid bulk, the latent heat per 
unit mass of the vapour phase is given by 

r; = hi--h’. 

On the basis of these relationships both kinds of the 
capillary latent heat can be described by 

r* = r+v pS(l-expm) - ( (4+l)a,-3Taa,/aT 

R 17 
(23) 

in which the upper signs (+ ) relate to droplets in 
vapour atmosphere, while the lower ones (- ) to 
bubbles within a liquid bulk. 

As can be seen, the two kinds of the capillary latent 
heat are different from the usual one, viz. according to 
the relation 

r; < r < ri, 

on condition that temperature and particle size in the 
disperse phase are equal. This means that in com- 
parison with the usual latent heat less energy is 
required for the evaporation of the liquid phase if it 
forms droplets, and, on the other hand, more energy is 
released during the condensation of the vapour phase 
if it consists of bubbles. 
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Based on the foregoing, an opportunity offers itself 
to define the differentials of the characteristic functions 
adapted for disperse particles. 

The differentials of the fundamental equations 
(l)-(3) are given by 

dU, = dF,+d(TS,), 

dH, = dU,+d(p,V), 

dG, = dF,+d(p,V), 

consequently, by means of the Gibbs-Duhem relation 

S,dT-Vdp,+Mdg, =O, 

the differentials of the potential functions 
defined by 

dF, = -p,dV-S*dT+g,dM, 

dU, = TdS,-p,dV+g,dM, 

dH, = TdS,+Vdp*+g,dM, 

dG, = Vdp,-S,dT+g,dM, 

(24) 

can be 

(25) 

(26) 

(27) 

(28) 

and in specific form, when the Gibbs-Duhem relation 
becomes 

s,dT-vdp,+dg, = 0, (29) 

the differentials of the potential functions per unit mass 
of the disperse phase can be described by 

df, = -p,dv-s,dT, (30) 

du, = Tds,-p,dv, (31) 

dh, = Tds,+vdp,, (32) 

dg, = vdp,-s,dT. (33) 

As can be seen, these equations are different from the 
usual ones only to such an extent that they contain s*, 
ds,, p*, dp,, instead of s, ds, p, dp. The entropy s, and 
pressure p* adapted for disperse state are already 
available, consequently, their differentials can be de- 
termined. 

The partial differentiation of entropy s* (18) and 
pressure p* (16), viz. with respect to temperature T and 
radius R, results in 

where the double signs are to be used as above. 
Under the circumstances, the entropy differential is 

determined by 

+$$dT+ &dR), (38) 

while the differential of the pressure within disperse 
particles can be defined by 

dp* = (dp,+p,dm)expm+(lfl)d2, (39) 

what can be regarded as the analogue of 
Clausius-Clapeyron equation 

dp, = - “‘--” dT, V’S_ VI 

adapted for disperse state, in accordance with the fact 
that the pressure p., depends not only on temperature. 

Having established the differentials an opportunity 
offers itself to determine the polytropic exponent n, 
adapted for disperse state. 

As a matter of fact the isoentropic exponent denotes 
the quotient of the isobaric and the isochoric specific 
heat, but the two kinds of specific heat are the 
differential quotients of the enthalpy and the internal 
energy with respect to temperature. Thus in the case of 
saturation state, when the characteristic functions are 
one-variable functions, the notation of total differen- 
tials may be used in the expression 

CP dh/dT dh p_ 
K=C,=dufdT -du’ 

(40) 

The size variation of droplets and bubbles always is 
coupled with entropy variation, it is no isoentropic 
process, but a polytropic one. The expression of the 
isoentropic exponent (40) makes possible to determine 
the analogue of the polytropic exponent characteristic 
of real processes. Combining the equations (31), (32) 
and (40), we obtain 

dh* Tds,+vdp, 

“* =du, = Tds,-p*do 
(41) 

as the analogue of the polytropic exponent valid in 
disperse state, which can be rewritten by means of the 
equations (16), (38) and (39). 

It should be mentioned that the substitution ds, = 0 
yields the analogue of the isoentropic exponent given 

by 

vdp, 
K*=-- 

P* dv 
(42) 

as can be seen among the results of studies on 
multiphase systems [lo]. 

In the case of a polydisperse system in which the 
temperature and size distribution of the disperse phase 
is nonuniform, an average is to be determined. In this 
regard there are two different alternatives depending 
upon the nature of distribution. The distribution 
function may be either a discrete or a continuous one. 

In order to generalize and abbreviate the ensuing 
investigation let us introduce the notation 

z* =a*; f *; u*; h,; g,,; rz+zt (43) 

as a generalized symbol instead of the equations 

(18H23). 
On condition that the disperse phase is composed of 

discrete groups, in each of them the single spherical 
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particles have temperature T, and radius R,, besides, ing upon the surface tension will adequately be 
the mass M, represents the total mass of these groups, determined as it was just previously dealt with. 
the average per unit mass of the disperse phase can be In the case of more-component systems, i.e. if the 
determined by disperse phase consists of droplets or bubbles which 

are not of the same chemical composition, the equa- 
tions deduced for one-component systems are valid 
only for the single components of the disperse phase. 

where the symbol z* is to be substituted corresponding Under the circumstances let us use the notation z$‘, 
to the equation (43), in turn. .$!), and .$, instead of the equations (43)-(45), in turn, 

Similarly, in the case when the disperse phase where the index (i) denotes that the corresponding 
contains spherical particles of continuous temperature quantity belongs to the ith component, and the mass of 
and size distribution, the formula the ith component be represented by Mi. In this case 

i, = ~jz,U-JWdTdR the weighted average of the above-mentioned quan- 

JjMdTdR 
(45) tities per unit mass of the disperse phase can be 

determined either by 
yields the average of the above-mentioned functions 
per unit mass of the disperse phase. _.g) _ xi$‘Mi 

-* _- 
Till now we dealt with the characteristic functions ZiMi ’ (46) 

and some other relationships concerning the disperse 
phase in one-component systems, independent of its 

if the disperse particles are of discrete distribution, or 

state of aggregation (droplet or bubble). Further on, 
the differences will be outlined which can be found 

(47) 

between one- and two- or more-component systems in 
view of the disperse phase. 

if the temperature and size distribution is continuous. 

It is known that the behaviour of the interfacial 
In connection with the apalogue of Clausius- 

boundary layer is determined by the surface tension 
Clapeyron equation for multiphase systems (39), a 

which is strongly dependent upon the chemical com- 
phenomenon worth mentioning will be presented 

position and temperature of the liquid phase, less 
which covers the range of theoretical interest and 

affected by the size (apart from the range of very 
practical importance alike. 

minute sizes), and scarcely influenced by the chemical 
The pressure in a vapour bubble necessarily exceeds 

composition of the adjacent noncondensed phase. 
that of the ambient liquid. Besides, it is known that the 

It follows from the foregoing that the surface tension 
Clausius-Clapeyron equation connects the pressure 

in all equations should be taken into account in 
difference to the temperature difference [17, 181, 

accordance with the liquid medium referred to the 
therefore in consequence of the equations (13)-(16) 

adjacent vapour or gas, independent of which fluid is in 
there is no thermal equilibrium between vapour bub- 

disperse state. 
bles and the ambient liquid. 

This means that the equations deduced for the 
In accordance with experimental observations, as 

disperse phase in one-component systems are valid 
the bubble grows evaporation takes place at the 

also for that in two- or more-component systems, as to 
bubble boundary, while the temperature and pressure 

the form, but we have to take into consideration the 
in the bubble are thereby decreased. The reduction of 

following. 
the temperature within the bubble is a consequence of 

In a, supposed equilibrium the phases of different 
the latent heat requirement of the evaporation which 

chemical composition, consisting of chemically non 
takes place at the vapour-liquid interface, as the 

reacting species, penetrate into each other, in con- 
bubble grows [19]. 

sequence of what the liquid phase becomes a solution, 
This experience can qualitatively be expressed by 

and the vapour phase turns to a mixture of vapours. sgndT = sgndp;, (48) 
Therefore the solubility of the noncondensed com- 
ponent in the adjacent liquid, as well as, the evap- 

in accordance with the Clausius-Clapeyron equation 

oration of the liquid medium are to be taken into 
as well as by 

account when determining the surface tension. 
sgndp’; = -sgndR, (49) 

Under non-equilibrium conditions, when variation on the one hand, and by 
takes place in the droplet or bubble size, respectively, 
the phase of diminishing mass suffers no change in the sgn dp; = w d (AP), 

chemical composition, while the concentration of the on the other. 
other phase is continuously varied, however, it can be Under non-equilibrium conditions the bubble al- 
limited by physical and chemical properties of the ways has a radially moving boundary and the driving 
components. force of this motion is produced by the temperature 

Consequently, the equations deduced for the dis- difference between phases [ 18,201. 
perse phase in one-component systems are valid at In the case of bubble collapse the temperature 
two-component systems, too, viz. in their unchanged difference results in heat outflow what is accompanied 
forms, supposing that the physical quantities depend- by size reduction. Owing to the condensation at the 
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interface not only the bubble radius is decreased, but 
also the pressure difference between phases and the 
bubble pressure are increased, in accordance with the 
equations (48)-(50), while the wall temperature and 
the surface tension remain practically unchanged [ 181. 
The elevated temperature brings about a more in- 
tensive heat outflow, the size reduction reacts upon the 
iem~erature deference incre~ing it, the heat cutflow 
wili thereby be excited more thoroughly, therefore the 
temperature variation does not tend to the immediate 
equalization of the phase temperatures, contrary to all 
expectation [21]. 

However, we have to take into account that bubbles 
do not show necessarily a monotonic size reduction, 
but the size variation may be of fluctuating character, 
as it can be observed, too [22, 231. The possible size 
fluctuation may be treated as a secondary effect which 
is superposed on the primary effect produced by 
temperature dz@rence. In spite of this size fluctuation 
both the tem~rature and pressure uninterruptedly 
remain higher in the bubble than in the liquid phase. 
Thus the temperature difference between phases con- 
tinues to exist and maintains the basic tendency of size 
variation while yielding the stability on going to 
smaller and smaller sizes. 

it follows from the foregoing that the bubble 
collapse is a process of pos~tivefeedback. On the other 
hand, it can basically be regarded as a realization of the 
rocket principle in the special case of radially moving 
surface elements of decreasing mass, in the course of 
which motion a compression work is done what is 
accompanied by conversion of work to heat. Thus 
arises the question, how high the bubble temperature 
can be elevated. In this regard we have nothing else to 
suppose but the temperature rise goes on until it is 
affected by the cause maintaining the process. 

In the present case this cause is the growing tempera- 
ture difference by which also the pressure di$eence and 
the pressure itself are increased. It denotes that the 
vapour bubble would cease to exist at the critical 
temperature and pressure, if the surface tension de- 
creased with temperature rise of the bubble [21]. Since 
the wall temperature and surface tension are practi- 
cally not decreased [ 181, the pressure and temperature 
rise in the vapour bubble will exceed the critical values 
taken in the usual sense. Under the circumstances it 
would be more correct to call this phenomenon the 
modijication of the critical state, what directly follows 
from that of the saturation state depending upon 
particle size, too. 

This theorem is elfectually supports by the main 
results of some cavitation studies. It has been found 
that the cavitation damage arises primarily from 
repeated application of high stresses and temperatures 
of short duration which accompany the bubble disap- 
pearance [24]. The high bubble temperature in final 
state is to be supposed on the strength of the fact that a 
colour change of the metal surface can be observed at 
the sites of erosion damage caused by cavitation, The 
surface erosion and colour change must not be attri- 
buted to chemical dissociation in the liquid [24]. 

Searching for the cause of the cavitation damage we 
will return to the capillary superpressure given by the 
expression (11). 

In this connection it should be mentioned again that 
the wall temperature and the surface tension remain 
practically unchanged [18], thus the variation in 
surface tension should be attributed to the size vari- 
ation. 

As for this problem, opinions disagree. Using a 
quasithermodynamic approach Tolman [9] predicted 
a decrease in surface tension at small sizes and this 
result is supported by a statistical mechanical treat- 
ment due to Kirkwood and Buff [25]. On the other 
hand Martynov takes the view that surface tension 
should increase with curvature [26]. 

As yet there seems to be no direct experimental 
method for confirmation of these theoretical results 
but insight into the problem may be gained by 
returning to a previous assumption taken by Thomson 
[12]. He is of the opinion that the variation in sur~ce 
tension CT+ dependent on radius R would pass through a 
minimum. In the light of this assumption the above- 
mentioned inconsistency ceases and the partial 
theoretical results seem to be completed by one 
another. 

Thus come we to the conclusion that in the initial 
period of bubble disappearance the effect of size 
variation is stronger than the contrary effect of surface 
tension variation on capillary super-pressure, i.e. the 
numerator decreases less than the nominator in the 
expression (11). In the subsequent period of bubble 
disappearance the surface tension-beyond its 
minimum-incre~~ with size decrease, thus thecapil- 
lary superpressure will be elevated very much what 
leads to extremely high values of final pressure and 
temperature in bubbles. This is in full agreement with 
the well-known results of experimental observations 
that the final pressure at bubble disappearance is very 
high, it might be as well a large multiple (102-103-foId) 
of the critical pressure taken in the usual sense. Such an 
order of magnitude in final pressure can occur only in 
the case of an extremely rapid and considerable increase 
in surface tension on going to very minute bubble sizes. 

Under the circumstances the temperature equaliz- 
ation of phases is carried out in such a way that the 
bubble of minute residual mass which is in the 
modified critical state determined by the final bubble 
size expands like explosion producing thereby a strong 
shockwave and then mixes with the liquid phase. 

It can be observed that the superficial effects become 
important especially when the bubbie is near the point 
of complete coIlapse [18], in other words, in the 
submicroscopic range. 

Finally, it should be mentioned that the usual 
thermodynamic diagrams of two dimensions (pressure 
vs temperature, pressure vs specific volume, tempera- 
ture vs specific entropy, specific enthalpy vs specific 
entropy etc.) are valid for bulky liquid and vapour 
only. The diagrams in question referred to droplets 
and bubbles are arranged in space and can be deduced 
from the planar ones, if we complete them by the 
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spatial third co-ordinate l/R. In such co-ordinate 
systems the original diagrams become the reference 
planes where i/R = 0, so they remain valid for bulky 
phases, in other words, the superficial terms referred to 
disperse particles of finite radius disappear in the 
modified equations. 

Though the effects of the translatory motion not 
dealt with are of great importance, they do not change 
the character of the processes in question but, of 
course, their time dependence is thereby varied. 
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LES FONCTIONS CARA~ERISTIQUES DES SYSTEMES DE FLUIDES 
A PLUSIEURS PHASES ET L’INTERPRETATION THERMODYNAMIQUE DU 

COLLAPSUS DES BULLES DE VAPEUR 

Ri?sum&-On ttudie les effets de l’interface de phase, et de la tension interfaciale dans les systemes de 
fluides multiphasiques. On &value la modification de l’entropie, de l’energie libre, de l’tnergie interne, de 
l’enthalpie, de I’enthalpie libre et leurs diff&entielles, a la fois pour des gouttelettes et des bulles de 
vapeur de temp&ature uniforme ou non et avec une distribution en taille. L’ktude tient compte aussi de 
la chaleur Iatente, de l’bquation de Clausius-Clapeyron, de l’exposant ~lytropique adapt6 B I%tat 
disperst. Les relations dtduites pour des systkmes 8 un seul composant sont gtnCralisCes pour des 
systkmes g deux ou trois composants. On montre que lors de la rkduction de la taille de la butte, la 
temperature de la vapeur et la pression s’kl8vent bien au dessus des valeurs critiques connues au sens 
habituel, car dans I’etat de saturation la courbe de coexistance et l’ttat critique sont modifi& par la 
dimension submicroscopique de la bulle. On explique l’interdtpendence entre I’annihiiation de la bulle 

et les degats par cavitation. 

DIE CHARAKTERISTISCHEN FUNKTIONEN MEHRPHASIGER 
FLUIDSYSTEME UND DIE THERMODYNAMISCHE INTERPRETATION DES 

ZUSAMMENBRECHENS VON DAMPFBLASEN 

Z~m~fassung-Es werden die E&l&se van Phasen~en~~che und O~~~chenspannung in 
mehrphasigen Fluidsystemen untersucht. Fiir Tropfen und Dampfblasen mit gleichf&miger und ungleich- 
fiirmiger Temperatur und GrGBenverteilung werden die Anderungen der Entropie, der freien Energie, der 
inneren Energie, der Enthalpie und der freien Enthalpie und deren Differentiale abgeleitet. Die Untersuchung 
liefert aul3erdem die latente W&me, die Clausius-Clapeyron-Gleichung und den Polytropanexponenten fiir 
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den dispersen Zustand. Die fiir Einkomponenten-Systeme abgeieiteten Beziehungen werden auf zwei- und 
Mehrkomponenten-Systeme erweitert. Es wird gezeigt, da5 im Verlauf der Abnahme der BlasengriiOe 
sowohl die Dampftemperatur wie der Druck erheblich iiber die normalen kritischen Werte ansteigen, da der 
S;ittigungszustand, die Koexistenzkurve und der kritische Zustand infolge der submikroskopischen 
BlasengrSe wesentliche Anderungen erfahren. AuBerdem wird der Zus~menhang zwischen Bl~nkoila~ 

und Kavitationssch~den erkl&t. 

XAPAKTEPHCl-FiECKPiE @YHKL&ikf MHOTO@A3HbIX TH~&iX CHCTEM 
&f TEPMOA~HAM~~ECKOE OI’IMCAHHE PASPYIIIEHRII IIY3bIPbKOB IIAPA 

N-- ~CCiIeEyMTCSI 3@&ZCTbI H8 l-paHH3le pa3J&JI& @i H IlOBe+3xHoCTHOl-o imTaRmHn#t B 
~oro#~+nnrx ~HX cmmwax. Bz~paxmm LUISI 3mponm, CBO~OJWO~~ 3HepMR, BqTpemefi 
3~p~H,3~~~A,CB060AAO~3~~~HIIHX~~~~BJIOBB~et~e~anrr RaIWleKHjT,JIK 

ny3brpbxon napa npn pannotvrepriobf H nepanaobiepnoM pacnpejm.nenmi no pa3sfepaM EI Tehinepa- 
TypLM. B pe3yJtbTaTe riccne~onatitir onpenenexa Taioire CKPbtTan TenJloTa ttapoo6pa3ona~m~ H 
norra3aTenb nomrTp0nb1, paccrsrTatmbt5 ~3 micnepcnoro ~Tomnnr. Coo~trortmrism, nbmcnerfnbxe 
m o~oKo~oHeH~~x CHCT~M, o6o6mentJ JUIR CH~T~M c AB~MX R 60~~2 Komo~emam. Ilo- 
xa3EuI0, ~0 npsi yMe~~e~ pa3rdepa ny3bspbKa TeMnepaTypa impa H mwremse mwioro npe- 
~bima~TKpRlRIeCRXe3IlsYCRR16,B3~eB06bl'lfiD~c~~e, m~~om~ycoc~om~~e~%~c~e~~ 
~psirrivec~oe cocToffmie cymecTnemi0 ~0~~i~~~~iponanb1 a3-3a nammsm ny3~tpmron cy6~nxpoc~o- 
tt3i’tKKHX pa3MepOB.O6%JIcEieEfaTaKXCeB3iUiMOCBR3bMeZiUly~ mGSlWWWtiny3JdpbKaAKaBSiTWEOH- 

HbIMB noBpewIeHHnMH. 


